Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Applied Energy
Article . 2017
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm

Authors: Mirosław Lewandowski; Maciej Wieczorek;

A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm

Abstract

Abstract This paper proposes a simple and easily optimizable mathematical representation of an energy management strategy (EMS) for the hybrid energy storage system (HESS) in EV. The power of each device in the HESS is provided as a continuous function of load power called γ. Two strategies based on the proposed method, one incorporating fixed coefficients of the γ function (GBS) and one with coefficients optimized by a genetic algorithm (GAS) in real-time using a backward time window, are tested and compared to the rule-based strategy (RBS) and battery storage system. The calculations are made for an electric car with a LiFePO4 battery-supercapacitor HESS. The analyzed parameters are: energy consumption, RMS and maximum current rates of the battery, and the cycle cost of an EV with HESS and a battery-powered EV. The analysis is made in dependence on drive cycle speed and an internal resistance of the battery module. The obtained results show that the GBS and the GAS are able to reduce the RMS current rate by 40% in the NEDC in comparison to battery-powered EV, as well as that maximum current rates do not exceed nominal values. The GAS aims at the minimization of energy consumption. It obtains best results in low speed cycles.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    186
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
186
Top 1%
Top 1%
Top 1%