Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-driven models for short-term thermal behaviour prediction in real buildings

Authors: Francesco Ferracuti; Alessandro Fonti; Lucio Ciabattoni; Stefano Pizzuti; Alessia Arteconi; Lieve Helsen; Gabriele Comodi;

Data-driven models for short-term thermal behaviour prediction in real buildings

Abstract

Abstract This paper presents the comparison of three data driven models for short-term thermal behaviour prediction in a real building, part of a living smart district connected to a thermal network. The case study building is representative of most of the buildings of the tertiary sector (e.g. offices and schools) built in Italy in the 60s–70s of the 20th century. The considered building models are: three lumped element grey-box models of first, second and third order, an AutoRegressive model with eXogenous inputs (ARX) and a Nonlinear AutoRegressive network with eXogenous inputs (NARX). The models identification is performed by means of real measured data. Nevertheless the quantity and quality of the available input data, all the data driven models show good accuracy in predicting short-term behaviour of the real building both in winter and summer. Among the grey-box models, the third order one shows the best performance with a Root-Mean-Square Error (RMSE) in winter less than 0.5 °C for a prediction horizon of 1 h and a RMSE less than 1 °C for a prediction horizon of 3 h. The ARX model shows a maximum RMSE less than 0.5 °C for a prediction horizon of 1 h and a RMSE less than 0.8 °C for a prediction horizon of 3 h. The NARX network shows a maximum RMSE less than 0.5 °C for a prediction horizon of 1 h and a RMSE less than 0.9 °C for a prediction horizon of 3 h. In summer the RMSE is always lower than 0.4 °C for all the models with a 3-h prediction horizon. Other than typical control applications, the paper demonstrates that all the data driven models investigated can also be proposed as a powerful tool to detect some typologies of occupant bad behaviours and to predict the short-term flexibility of the building for demand response (DR) applications since they allow a good estimation of the building “thermal flywheel”.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 10%
bronze