
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Eco-efficiency analysis of non-potable water systems in domestic buildings

handle: 10397/101286
Abstract Energy efficiency in water systems contributes significantly towards achieving sustainable water management. Decentralized anaerobic fluidized bed membrane bioreactor (AFMBR) systems with energy recovery have been proposed for greywater recycling in domestic buildings for non-potable uses, such as toilet flushing. This study developed an eco-efficiency analysis (EEA) framework with the integration of life-cycle assessment (LCA) and economic analysis for the evaluation of different water systems. Four water management scenarios including (1) freshwater flushing system, (2) seawater flushing system, (3) greywater flushing system adopting aerobic membrane bioreactor (MBR), and (4) greywater flushing system adopting AFMBR, were analyzed in a case study in Hong Kong. The EEA results reveal the AFMBR greywater reuse scenario to be the most eco-efficient option as the system is capable of energy recovery, recycling of water resource and reduction of sewage treatment loadings. This study has demonstrated that the EEA framework is an effective tool to guide water management towards sustainability and provides a basis for further research on the application of greywater recycling systems on a larger scale.
- National Cheng Kung University Taiwan
- Hong Kong Polytechnic University (香港理工大學) Hong Kong
- Hong Kong Polytechnic University (香港理工大學) Hong Kong
- National Cheng Kung University Taiwan
- Hong Kong Polytechnic University (香港理工大學) China (People's Republic of)
Greywater reuse, Energy recovery, Eco-efficiency analysis, Decentralized AFMBR
Greywater reuse, Energy recovery, Eco-efficiency analysis, Decentralized AFMBR
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
