
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Water loading lift and heat storage density prediction of adsorption heat storage systems using Dubinin-Polanyi theory—Comparison with experimental results

Water loading lift and heat storage density prediction of adsorption heat storage systems using Dubinin-Polanyi theory—Comparison with experimental results
Simulating adsorption-based heat storage devices requires knowledge of both the adsorption equilibria and the adsorption enthalpies of the adsorbent materials involved. The Dubinin-Polanyi theory of micropore filling can be used as a tool to reduce the experimental work for the thermodynamical characterization of various adsorption working pairs. In particular it can be used for the deduction of adsorption enthalpies from adsorption equilibrium data. In this work we assess if this theory can be employed to predict the outcome of experiments performed on a lab-scale heat storage device. For that purpose, we present a numerical model of the sorption chamber, which describes the sorption behavior by means of the Dubinin-Polanyi theory. The simulated heat storage densities and water loading lifts are compared to experimentally determined data of two granulated zeolite samples, namely a zeolite Na-X and a zeolite Ca-X, under various humidity conditions.
- Trinity College Dublin Ireland
- Helmholtz Association of German Research Centres Germany
- TU Dresden Germany
- Leipzig University Germany
- Helmholtz Centre for Environmental Research Germany
3 Research products, page 1 of 1
- 2004IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
