Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reconciling strategy towards construction site selection-layout for coal-fired power plants

Authors: Heping Xie; Zhe Zhang; Xiaoling Song; Xiaoling Song; Jiuping Xu; Yimin Wu; Feniosky Peña-Mora; +1 Authors

Reconciling strategy towards construction site selection-layout for coal-fired power plants

Abstract

Abstract There is an increasing debate on a new coal-fired power plant (CPP) construction over a demanding economic development and pressing environmental issues. A fundamental spatial analysis is required to identify potentially suitable sites, select a site and design a layout plan that are crucial for a sustainable energy development. The site selection and layout planning problems are mutually dependent. The different selection of the sites may lead to variations in the site layout plan, and vice versa. A proper site selection-layout planning solution is vital to the environmental, economic and social performances of a coal-fired thermal energy system. This study proposes a reconciling strategy to address the site selection and layout planning problems simultaneously. In specific, three types of conflicts in the site selection and layout planning processes are deliberately identified and quantified. To reconcile the conflicts, address practical constraints, and arrive at a “win-win” solution, three mechanisms are introduced and a bi-level multi-objective optimization model is established. Subsequently, a bi-level particle swarm optimization (BiPSO) is developed to generate an appropriate CPP site for the project owner and design an efficient site layout plan for the specialty subcontractor. The reconciling strategy is able to settle an agreement between the project owner and the subcontractor. To validate the applicability of the proposed method, a being-constructed CPP in China is used as a case study. The results demonstrate that it is an effective, robust and systematic method for decision makers to conduct a proper spatial analysis.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average