Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2018
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental investigation into the effectiveness of a super-capacitor based hybrid energy storage system for urban commercial vehicles

Authors: Ottorino Veneri; Clemente Capasso; Stanislao Patalano;

Experimental investigation into the effectiveness of a super-capacitor based hybrid energy storage system for urban commercial vehicles

Abstract

This paper is aimed to experimentally analyse the effectiveness of a hybrid storage system, when powering a commercial vehicle for urban use. The hybrid energy storage system is composed by two ZEBRA batteries, combined with an electric double layer capacitor (EDLC) module. The integration of those storage systems is obtained by means of a bidirectional DC/DC converter, which balances the electric power fluxes between batteries and super-capacitors, depending on the driving operative conditions. Modeling and simulations are preliminarily conducted with reference to the specific case study of an electric version of the Renault Master, supplied by the above described hybrid storage system. That theoretical activity allows the optimization of rule based energy management strategies for the hybrid energy storage system, in terms of the effectiveness in reducing the negative effects of high charging/discharging currents on battery durability. Then, the experimentation of the real power train, connected to the mentioned hybrid storage system, is carried out through a 1:1 laboratory test bench, able to perform the analysed energy management strategies on standard driving cycles, representative of the urban mission of the commercial vehicle under study. The obtained experimental results, expressed through electrical and mechanical parameters in a wide range of road operative conditions, show that the super-capacitors can improve the expected battery lifespan, with values of maximum effectiveness up to 52%, for driving patterns without negative road slopes. The procedure followed and presented in this paper definitely demonstrates the good performance of the evaluated hybrid storage system, controlled by the DC/DC power converter, to reduce the negative consequences of the power peaks associated with the urban use of commercial vehicles.

Country
Italy
Keywords

Electric double layer capacitors, Hybrid storage systems, Electric vehicles, Energy management strategies, Dynamic test bench, ZEBRA batteries

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 1%
Top 10%
Top 1%
bronze