Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Optimal voltage regulation for distribution networks with multi-microgrids

Authors: orcid Tao Xu;
Tao Xu
ORCID
Harvested from ORCID Public Data File

Tao Xu in OpenAIRE
He Meng; Xiaoxue Wang; Li Yu; Peng Li; Lingxu Guo; Chengshan Wang;

Optimal voltage regulation for distribution networks with multi-microgrids

Abstract

Abstract With the increasing penetration of renewables, microgrid integration has been considered as one of the most promising approaches to enhance the utilizations of various types of energy resources in smart distribution systems. In the near future, with the higher levels of intermittent renewables are envisaged, the distribution network operators will face significant challenges to the control and operation of distribution networks dispersedly. Consequently, the development of effective and motivating ancillary service schemes in a decentralized way for executing real-time control and reducing calculation and communication burden is still in its infancy and needs to be researched. To address this issue, this paper explores an optimal voltage regulation method with the participants of multi-microgrids based on multiple agent systems. Without an arbitration agent, peer agents in the multiple agent system calculate voltage sensitivities by local and neighbourhood measurements only. In this paper, a bi-level game model is proposed for voltage control process. In the upper-level, the distribution network operator searches the reasonable incentive mechanism based on the Stackelberg game. In the lower-level, microgrids make voltage control strategies autonomously based on a static game among microgrids. In the proposed method, microgrids participate in voltage control in distribution networks as ancillary service providers while maximizing their own profits. Meanwhile, the distribution network operator reduces the infrastructure reinforcement and avoids unnecessary renewable energy curtailment. Finally, the feasibility and effectiveness of the proposed method has been demonstrated on a modified IEEE 33-bus system.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 1%
Top 10%
Top 1%
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?