Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trade-offs between electrification and climate change mitigation: An analysis of the Java-Bali power system in Indonesia

An analysis of the Java-Bali power system in Indonesia
Authors: Kamia Handayani; Yoram Krozer; Tatiana Filatova;

Trade-offs between electrification and climate change mitigation: An analysis of the Java-Bali power system in Indonesia

Abstract

The power sector in many developing countries face challenges of a fast-rising electricity demand in urban areas and an urgency of improved electricity access in rural areas. In the context of climate change, these development needs are challenged by the vital goal of CO2 mitigation. This paper investigates plausible trade-offs between electrification and CO2 mitigation in a developing country context, taking Indonesia as a case study. Aligned with the 2015 Paris Agreement, the Government of Indonesia has announced its voluntary pledge to reduce 29% of its GHGs emissions against the business as usual scenario by 2030. 11% of this should be attained by the energy sector. We incorporate the Indonesian Paris pledge into the modelling of capacity expansion of the Java-Bali power system, which is the largest power system in Indonesia. The LEAP model is used for the analysis in this study. Firstly, we validate the LEAP model using historical data of the national electricity system. Secondly, we develop and analyse four scenarios of the Java-Bali power system expansion from the base year 2015 through to 2030. These include a reference scenario (REF) to reflect a continuation of the present energy mix (REF), then a shift from coal to natural gas (NGS) (natural gas), followed by an expansion of renewable energy (REN) and, finally, the least-cost option (OPT). The shift to natural gas decreases future CO2 emissions by 38.2 million ton, helping to achieve the CO2 mitigation target committed to. Likewise, an escalation of renewable energy development in the Java-Bali islands cuts the projected CO2 emissions by 38.9 million ton and, thus, assures meeting the target. The least-cost scenario attains the targeted emission reduction, but at 33% and 52% lower additional costs compared to NGS and REN, respectively. The cost-effectiveness of CO2 mitigation scenarios range from 14.9 to 41.8 US$/tCO2e.

Country
Netherlands
Keywords

Power sector, LEAP, Paris Agreement, Climate change mitigation, Renewable energy (RE), Indonesia, SDG 13 - Climate Action, SDG 7 - Affordable and Clean Energy

Powered by OpenAIRE graph
Found an issue? Give us feedback