Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent advances in the analysis of residential electricity consumption and applications of smart meter data

Authors: Jonathon Dore; Jose I. Bilbao; Alistair B. Sproul; Baran Yildiz;

Recent advances in the analysis of residential electricity consumption and applications of smart meter data

Abstract

Abstract The emergence of smart grid technologies and applications has meant there is increasing interest in utilising smart meters. Smart meter penetration has significantly increased over the last decade and they are becoming more widespread globally. Companies such as Google, Nest, Intel, General Electric and Amazon are amongst those companies which have been developing end use applications such as home and battery energy management systems which leverage smart meter data. In addition, utilities and networks are becoming more aware of the potential benefits of using household smart meter data in demand side management strategies such as energy efficiency and demand response. Motivated by this fact, the amount of research in this area has grown considerably in recent years. This paper reviews the most recent methods and techniques for using smart meter data such as forecasting, clustering, classification and optimization. The study covers various applications such as Home and Battery Energy Management Systems and demand response strategies enabled by the analysis of smart meter data. From a comprehensive review of the literature, it was observed that there are remarkable discrepancies between the studies, which make in-depth comparison and analysis challenging. Data analysis and reporting guidelines are suggested for studies which use smart meter data. These guidelines could provide a consistent and common framework which could enhance future research.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    195
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
195
Top 1%
Top 1%
Top 1%