Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin

Authors: Y.P. Li; Y.P. Li; Yurui Fan; S. Nie; Guohe Huang; Guohe Huang; L. Yu; +1 Authors

A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin

Abstract

Abstract In this study, a copula-based flexible-stochastic programming (CFSP) method is developed for planning regional energy system (RES). CFSP can deal with multiple uncertainties expressed as interval values, random variables and fuzzy sets as well as their combinations employed to objective function and soft constraints. It can also reflect uncertain interactions among random variables through using copula functions even having different probability distributions and previously unknown correlations. Then, based on the developed CFSP approach, a CFSP-RES model is formulated for planning RES of the urban agglomeration of Beijing and Tianjin (China). Results disclose that uncertainties existed in the system components have significant effects on the outputs of decision variables and system cost, and the variation of system cost is reached 16.3%. Results also reveal that air pollutant emissions can be mitigated if the urban agglomeration can co-implement renewable energy development plans (REDP) over the planning horizon, with the reductive rates of [3.3, 7.6] % of sulfur dioxide (SO2), [2.7, 4.1] % of nitrogen oxides (NOx) and [7.0, 11.5] % of particulate matter (PM10). Compared to joint-probabilistic chance-constrained programming (JCP), the CFSP method is more effective for handling multiple random parameters associated with different probability distributions in which their correlations are unknown. Thus, it is not limited to some unjustified assumptions and can be applied to a wider range of problems than previous studies. The findings are helpful to explore the influence of interaction among random variables on modeling outputs and provide in-depth analysis for identifying desired decision schemes for planning RES.

Country
United Kingdom
Keywords

330, 710, CopulaInteraction of random variables, Regional energy system, Programming, Multiple uncertainties, Pollutant mitigation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 1%
Top 10%
Top 1%
Green
bronze