Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao uBibliorum Repositor...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization

Authors: Nunes, H.G.G.; Pombo, José Álvaro Nunes; Mariano, S.; Calado, M. do Rosário; Felippe de Souza, J.A.M.;

A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization

Abstract

Abstract Determining the mathematical model parameters of photovoltaic (PV) cells and modules represents a great challenge. In the last few years, several analytical, numerical and hybrid methods have been proposed for extracting the PV model parameters from datasheets provided by the manufacturers or from experimental data, although it is difficult to determine highly reliable solutions quickly and accurately. In this paper, we propose a new method for determining the PV parameters of both the single-diode and the double-diode models, based on the guaranteed convergence particle swarm optimization (GCPSO), using experimental data under different operating conditions. The main advantage of this method is its ability to avoid premature convergence in the optimization of complex and multimodal objective functions, such as the function that determines PV parameters. To validate performance, the GCPSO method was compared with several analytical, numerical and hybrid methods found in the literature. This validation considered three different case studies. The first two are important reference case studies in the literature and have been widely used by researchers. The third was performed in an experimental environment, in order to test the proposed method under a real implementation. The proposed methodology can find highly accurate solutions while demanding a reduced computational cost. Comparisons with other published methods demonstrate that the proposed method produces very good results in the extraction of the PV model parameters.

Country
Portugal
Keywords

Guaranteed convergence particle swarm optimization, Double-diode model, Single-diode model, Experimental data, Parameter extraction

Powered by OpenAIRE graph
Found an issue? Give us feedback