Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting

Authors: Al-Musaylh, Mohanad S.; Deo, Ravinesh C.; Li, Yan; Adamowski, Jan F.;

Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting

Abstract

Abstract Real-time energy management systems that are designed to support consumer supply and demand spectrums of electrical energy continue to face challenges with respect to designing accurate and reliable real-time forecasts due to the stochasticity of model construction data and the model’s inability to disseminate both the short- and the long-term electrical energy demand (G) predictions. Using real G data from Queensland, Australia’s second largest state, and employing the support vector regression (SVR) model integrated with an improved version of empirical mode decomposition with adaptive noise (ICEEMDAN) tool, this study aims to propose a novel hybrid model: ICEEMDAN-PSO-SVR. Optimization of the model’s weights and biases was performed using the particle swarm optimization (PSO) algorithm. ICEEMDAN was applied to improve the hybrid model’s forecasting accuracy, addressing non-linear and non-stationary issues in time series inputs by decomposing statistically significant historical G data into intrinsic mode functions (IMF) and a residual component. The ICEEMDAN-PSO-SVR model was then individually constructed to forecast IMFs and the residual datasets and the final G forecasts were obtained by aggregating the IMF and residual forecasted series. The performance of the ICEEMDAN-PSO-SVR technique was compared with alternative approaches: ICEEMDAN-multivariate adaptive regression spline (MARS) and ICEEMDAN-M5 model tree, as well as traditional modelling approaches: PSO-SVR, MARS and M5 model tree algorithms. To develop the models, data were partitioned into different subsets: training (70%), validation (15%), and testing (15%), and the tuned forecasting models with near global optimum solutions were applied and evaluated at multiple horizons: short-term (i.e., weekends, working days, whole weeks, and public holidays), and long-term (monthly). Statistical metrics including the root-mean square error (RMSE), mean absolute error (MAE) and their relative to observed means (RRMSE and MAPE), Willmott’s Index (WI), the Legates and McCabe Index ( E LM ) and Nash–Sutcliffe coefficients ( E NS ), were used to assess model accuracy in the independent (testing) period. Empirical results showed that the ICEEMDAN-PSO-SVR model performed well for all forecasting horizons, outperforming the alternative comparison approaches: ICEEMDAN-MARS and ICEEMDAN-M5 model tree and the PSO-SVR, PSO-MARS and PSO-M5 model tree algorithm. Due to its high predictive utility, the two-phase ICEEMDAN-PSO-SVR hybrid model was particularly appropriate for whole week forecasts ( E NS = 0.95 , MAPE = 0.89 % , RRMSE = 1.22 % , and E LM = 0.79 ), and monthly forecasts ( E NS = 0.70 , MAPE = 2.18 % , RRMSE = 3.18 % , and E LM = 0.56 ). The excellent performance of the ICEEMDAN-PSO-SVR hybrid model indicates that the two-phase hybrid model should be explored for potential applications in real-time energy management systems.

Country
Australia
Keywords

SVR, M5 model tree, 330, energy management system, PSO, MARS, improved CEEMDAN, electricity demand

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 1%
Top 10%
Top 1%