
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system

Abstract In recent times, there has been a significant increase in intermittent renewable electricity capacity additions to the generation mix. This, coupled with an aging electrical grid that is poorly equipped to handle the ensuing mismatch between generation and use, has created a strong need for flexible, advanced bulk energy storage technologies. In this paper, one such technology recently invented and demonstrated at Oak Ridge National Laboratory is introduced and characterized. Similar to compressed-air energy storage, the Ground-Level Integrated Diverse Energy Storage (GLIDES) technology is based on gas compression/expansion, however, liquid-piston compression and expansion are utilized. In common with pumped-storage hydroelectricity, hydraulic turbomachines (pump/turbine) are utilized for energy storage and recovery, however, pressure vessels are utilized to create artificial elevation (head) difference, allowing pressure head of several thousands of feet to be reached. This paper reports on the experimental performance of the first GLIDES proof-of-concept prototype, and presents formulation and results from a validated physics-based simulation model.
- Georgia Institute of Technology United States
- Georgia Institute of Technology United States
- Oak Ridge National Laboratory United States
- Oak Ridge National Laboratory United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).76 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
