Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2018 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wind energy and carbon dioxide utilisation as an alternative business model for energy producers: A case study in Spain

Authors: Z. Kapetaki; E. Tzimas; I. González-Aparicio;

Wind energy and carbon dioxide utilisation as an alternative business model for energy producers: A case study in Spain

Abstract

Abstract Renewable energy sources for electricity and more efficient processes are needed to decrease greenhouse gas emission rates, in line with the Paris agreement adopted in 2015. Carbon dioxide utilization is emerging as a complementary technology to carbon dioxide capture and storage for reducing greenhouse gas emissions, and as a promising source of competitive advantage for European industry. Current carbon dioxide utilisation technologies are at different stages of maturity, with some being ready to implement immediately. Others are still under research or at a pilot or demonstration phase, requiring further development to reach commercial maturity. Thus, the profitability of such processes under current market conditions is still under evaluation. This study explores the conditions required for an environmentally and economically feasible methanol producing carbon dioxide utilisation system embedded in the energy system. The choice to produce methanol is based on its current mature commercial status and on growing global demand, which makes it an attractive product. The concept proposed considers only one system actor: a wind power producer with a typical operating wind power generation portfolio that invests in a new technology to maximise the total profit. The core of the business model is based on decisions for: (i) selling the wind power in the day-ahead or intraday bidding sessions of the power market or, (ii) producing methanol to be sold to third parties. Several scenarios are tested within the proposed business model to define optimum conditions. Limitations for the economic feasibility of the methanol plant integration into a market with an increasing integration of renewable energy are also highlighted. Results show that producing methanol instead of selling the wind power generated in the market is more profitable when the methanol plant size is three times smaller than a conventional and when power is generated by high speed winds. Under such conditions, the power market energy mix has high amounts of wind power and thus, already a significantly lower carbon dioxide emissions rate. Wind power supplied to the small methanol plant is less than 1% of the total wind energy produced. Furthermore, the wind producer could increase profits by up to 33% by integrating methanol production into their business strategy rather than selling all the energy produced in the power market.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
hybrid