Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimentally-determined characteristics of radiant systems for office buildings

Authors: Hongyuan Jia; Hongyuan Jia; Philip Haves; Xiufeng Pang;

Experimentally-determined characteristics of radiant systems for office buildings

Abstract

Abstract Radiant heating and cooling systems have significant energy-saving potential and are gaining popularity in commercial buildings. The main aim of the experimental study reported here was to characterize the behavior of radiant cooling systems in a typical office environment, including the effect of ceiling fans on stratification, the variation in comfort conditions from perimeter to core, control on operative temperature vs. air temperature and the effect of carpet on cooling capacity. The goal was to limit both the first cost and the perceived risk associated with such systems. Two types of radiant systems, the radiant ceiling panel (RCP) system and the radiant slab (RS) system, were investigated. The experiments were carried out in one of the test cells that constitute the FLEXLAB test facility at the Lawrence Berkeley National Laboratory in March and April 2016. In total, ten test cases (five for RCP and five for RS) were performed, covering a range of operational conditions. In cooling mode, the air temperature stratification is relatively small in the RCP, with a maximum value of 1.6 K. The observed stratification effect was significantly greater in the RS, twice as much as that in the RCP. The maximum increase in dry bulb temperature in the perimeter zone due to solar radiation was 1.2 K for RCP and 0.9 K for RS – too small to have a significant impact on thermal comfort. The use of ceiling fans was able to reduce any excess stratification and provide better indoor comfort, if required. The use of thin carpet requires a 1 K lower supply chilled water temperature to compensate for the added thermal resistance, somewhat reducing the opportunities for water-side free cooling and increasing the risk of condensation. In both systems, the difference between the room operative temperature and the room air temperature is small when the cooling loads are met by the radiant systems. This makes it possible to use the air temperature to control the radiant systems in lieu of the operative temperature, reducing both first cost and maintenance costs.

Country
United States
Related Organizations
Keywords

690, Built environment and design, Engineering, Energy, Radiant systems, Built Environment and Design, Economics, Architecture, FLEXLAB, Variation in comfort, Operative temperature, Stratification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
Green
bronze
Related to Research communities
Energy Research