
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental evaluation of model-based control strategies of sodium-nickel chloride battery plus supercapacitor hybrid storage systems for urban electric vehicles

handle: 11588/742127 , 20.500.14243/343112
This paper deals with hybrid energy storage system (HESS) management strategies, optimized for urban road electric vehicle applications. These new control strategies aim to extend battery pack durability by reducing charging/discharging current peaks by means of supercapacitors. The optimization is carried out with reference to the case study of a HESS composed of a high power unit, i.e. supercapacitor module plus a high energy unit, i.e. a battery pack, based on nickel-chloride ZEBRA (ZEolite Battery Research Africa) technology. On-board integration of the two storage devices is obtained through a DC/DC bidirectional power converter, as this configuration is particularly convenient for many kinds of urban vehicle operations. The novelty of this work consists in an analytical methodology, based on non-linear programming and calculus of variations theory, to evaluate management strategies characterized by high effectiveness in reducing battery current transients. The identification and optimization of these strategies are initially performed on the basis of a vehicle model, built in the Matlab-Simulink simulation environment. To this purpose, the experimental characterization of the supercapacitor module is obtained with reference to three different models, whose selection depends on the required fitting performance and computational effort indexes, as evaluated in the paper. The energy management strategies identified show promising results in the simulation environment, followed by experimental activities carried out by means of a dedicated 1:1 scale laboratory test bench. The various experimental results presented in this manuscript highlight that the identified ?-control strategy presents effectiveness values up to 57%, close to the ideal results obtained in the simulation environment. In fact, the methodology proposed in this paper, validated by laboratory experiments, definitely reduces the negative consequences of power peaks on the HESS, indicating the real possibility of using these results in the design and control of urban road vehicles.
- National Research Council United States
- University Federico II of Naples Italy
- National Research Council Italy
- Istituto Motori Italy
- National Academies of Sciences, Engineering, and Medicine United States
Hybrid storage systems, Monitoring, Policy and Law, Energy management strategies, Mechanical Engineering, Building and Construction, Modelling of electric double layer capacitors, Management, Dynamic test bench; Energy management strategies; Hybrid storage systems; Modelling of electric double layer capacitors; Building and Construction; Energy (all); Mechanical Engineering; Management, Monitoring, Policy and Law, Energy (all), Dynamic test bench
Hybrid storage systems, Monitoring, Policy and Law, Energy management strategies, Mechanical Engineering, Building and Construction, Modelling of electric double layer capacitors, Management, Dynamic test bench; Energy management strategies; Hybrid storage systems; Modelling of electric double layer capacitors; Building and Construction; Energy (all); Mechanical Engineering; Management, Monitoring, Policy and Law, Energy (all), Dynamic test bench
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
