Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-driven oxygen excess ratio control for proton exchange membrane fuel cell

Authors: Li Sun; Jiong Shen; Qingsong Hua; Kwang Y. Lee;

Data-driven oxygen excess ratio control for proton exchange membrane fuel cell

Abstract

Abstract Efficient oxygen excess ratio (OER) control is of great importance for proton exchange membrane fuel cell because it is closely associated with the economic efficiency and safety. As widely investigated, OER control is challenging due to the difficulties of system nonlinearity, parametric uncertainty and load disturbances. In this paper, an underlying difficulty for OER control is addressed by pointing out the overshoot response. To this end, this paper employs active disturbance rejection control which is able to handle the various difficulties in a data-driven manner. It treats the nonlinearity, uncertainty and disturbances as a lumped term, which is then estimated online via analyzing the real-time data. The estimated lumped term is canceled timely such that the remaining dynamics behaves like an integrator without overshoot term therein. The data-driven and conventional proportional-integral controllers are tuned and compared based on the linearized transfer function model, showing the potential superiority of the proposed method in terms of the uncertainty and disturbance rejection, anti-windup and overshoot reduction. The nonlinear simulation based on the nonlinear mechanism model further demonstrates it good flexibility under different operating conditions. Moreover, it requires less compressor movement efforts, leading to a dynamic energy-saving effect and thus prolonging the durability and lifetime of the compressor.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    200
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
200
Top 1%
Top 1%
Top 1%
bronze