Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses

Authors: Rocco, Matteo V.; Casalegno, Andrea; Colombo, Emanuela;

Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses

Abstract

Abstract According to IEA projections, the penetration of electric vehicles in the world transportation sector is expected to increase in the next decades to comply with the future GHG emissions policy targets. The change in transport technology mix will cause a change the environmental and economic impacts of the transportation sector, switching it from flows to funds, that is, from the production and use of the fuel to the production of the fuel pathway and powertrain infrastructures. Therefore, due to their comprehensiveness, the use of Life Cycle Assessment models will be increasingly important with respect to Well-to-Wheels ones in assessing the impact of future transport technologies. In this paper, the Hybrid Input-Output analysis is proposed as the appropriate framework to assess the impact due to a change in transport technology mix from a LCA perspective. First, LCA and WTW approaches are theoretically compared. Secondly, the LCA model is applied for the analysis of the economic and environmental impact caused by the prospected penetration of Fuel Cell Electric Vehicles (FCEV) based on Proton Exchange Membrane Fuel Cell (PEMFC) for Germany in 2050. In addition to the production of the vehicles, the LCA model includes the infrastructures for hydrogen production and distribution and the prospected change in the national electricity production mix. Significant discrepancies have been found by comparing results of LCA with the ones obtained by well-established WTW models already available in the literature. It is found that the impact caused by infrastructures and production of vehicles could significantly offset the expected reduction in CO2 emissions and primary non-renewable energy consumptions.

Related Organizations
Keywords

Energy modelling; Fuel cells electric vehicles; Input-Output analysis; Life Cycle Assessment; Transport sector; Well-to-Wheels; Building and Construction; Energy (all); Mechanical Engineering; Management, Monitoring, Policy and Law

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Green