Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems

Authors: Kamalakanta Sahoo; Kamalakanta Sahoo; Richard Bergman; Sudhagar Mani; Edward Bilek;

Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems

Abstract

Abstract Wildfires are getting extreme and more frequent because of increased fuel loads in the forest and extended dry conditions. Prevention of wildfire by fuel treatment methods will generate forest residues in large volumes, which in addition to available logging residues, can be used to produce biofuels and bioproducts. In this study, the techno-economic assessment of three portable systems to produce woodchips briquettes (WCB), torrefied-woodchips briquettes (TWCB) and biochar from forest residues were evaluated using pilot-scale experimental data. A discounted cash flow rate of return method was used to estimate minimum selling prices (MSPs) for each product, to conduct sensitivity analyses, and to identify potential cost-reduction strategies. Using a before-finance-and-tax 16.5% nominal required return on investment, and a mean transport distance of 200 km, the estimated delivered MSPs per oven-dry metric ton (ODMT) of WCB, TWCB, and biochar were $162, $274, and $1044 respectively. The capital investment (16–30%), labor cost (23–28%), and feedstock cost (10–13%) without stumpage cost were the major factors influencing the MSP of solid biofuels and biochar. However, the MSPs of WCB, TWCB, and biochar could be reduced to $65, $145, and $470/ODMT respectively with technologically improved portable systems. In addition, the MSPs of solid biofuels and biochar could be further reduced by renewable energy and carbon credits, if the greenhouse gas (GHG) reduction potentials are quantified and remunerated. In conclusion, portable systems could be economically feasible to use forest residues and make useful products at current market prices while simultaneously reducing potential wildfires and GHG emissions.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    147
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
147
Top 1%
Top 10%
Top 1%