Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset

Authors: Park, June Young; Yang, Xiya; Miller, Clayton; Arjunan, Pandarasamy; Nagy, Zoltan;

Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset

Abstract

Abstract Buildings are responsible for 30–40% of the anthropogenic greenhouse gas emissions and energy consumption worldwide. Thus, reducing the overall energy use and associated emissions in buildings is crucial for meeting sustainability goals for the future. In recent years, smart energy meters have been deployed to enable monitoring of energy use data with hourly or sub-hourly temporal resolution. The concurrent rise of information technologies and data analytics enabled the development of novel applications such as customer segmentation, load profiling, demand response, energy forecasting and anomaly detection. In this paper, we address load profiling and benchmarking, i.e., determining peer groups for buildings. Traditionally, static characteristics, e.g., primary space use (PSU) together with the annual energy-use-intensity (EUI) have been used to compare the performance of buildings. Data-driven benchmarking approaches have begun to also consider the shape of the load profiles as a means for comparison. In this work, we identify three fundamental load shape profiles that characterize the temporal energy use in any building. We obtain this result by collecting a dataset of unprecedented variety in size (3829 buildings) and primary use (75 programs), and applying a rigorous clustering analysis followed by entropy calculation for each building. The existence of fundamental load shape profiles challenges the man-made, artificial classification of buildings. We demonstrate in a benchmarking application that the resulting data-driven groups are more homogeneous, and therefore more suitable for comparisons between buildings. Our findings have potential implications for portfolio management, building and urban energy simulations, demand response and renewable energy integration in buildings.

Country
Singapore
Keywords

Technology, EFFICIENCY, Energy & Fuels, 330, Chemical, Building energy, Unsupervised learning, CLASSIFICATION, Engineering, Science & Technology, Load profile, Energy benchmarking, CONSUMPTION, Visual analytic, MODEL, Data analytic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 1%
Top 10%
Top 1%