
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Studies on dynamic responses and impedance of the vanadium redox flow battery

handle: 10356/151098
Abstract This paper studies the feasibility of using the vanadium redox flow battery (VRB) for power quality control applications. This work investigates the dynamic voltage and current responses of the VRB to load changes over a range of frequencies (up to 5 kHz), through experimental studies on a laboratory scale testing system. Experiments were carried out under different operating conditions to examine the effects of system SOC, discharging current and temperature. The analysis shows that the magnitude of battery impedance is higher at low frequencies but lower at high frequencies. These results suggest that the VRB has the ability to handle charging-discharging power fluctuations in a frequency range up to a kHz level. By using the concept of fractional order systems, the transient behaviour of the VRB cell was modelled as an equivalent circuit that utilises a constant phase element to represent the electrochemical double layer and a Warburg element to describe the effect of concentration polarisation. This equivalent circuit model is useful for electrical interface design and power flow control applications.
- Nanyang Technological University Singapore
- UNSW Sydney Australia
Engineering::Electrical and electronic engineering, 621, 600, 620, Vanadium Redox Flow Battery, :Electrical and electronic engineering [Engineering], Battery Dynamic Response
Engineering::Electrical and electronic engineering, 621, 600, 620, Vanadium Redox Flow Battery, :Electrical and electronic engineering [Engineering], Battery Dynamic Response
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
