
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The improved open-circuit voltage characterization test using active polarization voltage reduction method

Abstract The correlation between state of charge (SoC) and open-circuit voltage (OCV) is a crucial characteristic parameter in many aspects of the battery management system (BMS). However, it is a challenging task to obtain the accurate SoC-OCV correlation with a high test efficiency. In this paper, an improved OCV characterization test is proposed to actively reduce the polarization voltage. Based on the third-order equivalent circuit model (ECM), two sets of current pulses are applied to accelerate the convergence of the battery terminal voltage, thus the test time is effectively shortened compared to the conventional incremental OCV characterization test. Furthermore, the parametric sensitivity of the imposed current excitation to battery model parameters is analyzed. Subsequently, the parametric determination method for the imposed current excitation is provided. Experiments are conducted on a lithium-ion polymer battery to prove the feasibility of the proposed test procedure. Comparison with the conventional OCV characterization test further demonstrated the superiority of the proposed test procedure.
- Nanjing University of Aeronautics and Astronautics China (People's Republic of)
- San Diego State University United States
- San Diego State University United States
- Nanjing University of Aeronautics and Astronautics China (People's Republic of)
- University of California, San Diego United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).48 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
