Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions

Authors: Amin Moazami; Salvatore Carlucci; Vahid M. Nik; Vahid M. Nik; Vahid M. Nik; Stig Geving;

Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions

Abstract

Patterns of future climate and expected extreme conditions are pushing design limits as recognition of climate change and its implication for the built environment increases. There are a number of ways of estimating future climate projections and creating weather files. Obtaining adequate representation of long-term patterns of climate change and extreme conditions is, however, challenging. This work aims at answering two research questions: does a method of generating future weather files for building performance simulation bring advantages that cannot be provided by other methods? And what type of future weather files enable building engineers and designers to more credibly test robustness of their designs against climate change? To answer these two questions, the work provides an overview of the major approaches to create future weather data sets based on the statistical and dynamical downscaling of climate models. A number of weather data sets for Geneva were synthesized and applied to the energy simulation of 16 ASHRAE standard reference buildings, single buildings and their combination to create a virtual neighborhood. Representative weather files are synthesized to account for extreme conditions together with typical climate conditions and investigate their importance in the energy performance of buildings. According to the results, all the methods provide enough information to study the long-term impacts of climate change on average. However, the results also revealed that assessing the energy robustness of buildings only under typical future conditions is not sufficient. Depending on the type of building, the relative change of peak load for cooling demand under near future extreme conditions can still be up to 28.5% higher compared to typical conditions. It is concluded that only those weather files generated based on dynamical downscaling and that take into consideration both typical and extreme conditions are the most reliable for providing representative boundary conditions to test the energy robustness of buildings under future climate uncertainties. The results for the neighborhood explaining the critical situation that an energy network may face due to increased peak load under extreme climatic conditions. Such critical situations remain unforeseeable by relying solely on typical and observed extreme conditions, putting the climate resilience of buildings and energy systems at risk.

Country
Australia
Keywords

330, 333

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    231
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
231
Top 0.1%
Top 1%
Top 0.1%