Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental evaluation of a semi-open membrane-based absorption heat pump system utilizing ionic liquids

Authors: Devesh Chugh; Kyle R. Gluesenkamp; Ahmad Abu-Heiba; Morteza Alipanah; Abdy Fazeli; Richard Rode; Michael Schmid; +2 Authors

Experimental evaluation of a semi-open membrane-based absorption heat pump system utilizing ionic liquids

Abstract

Abstract While the use of energy efficient absorption heat pumps has been typically limited to the high capacity commercial and industrial applications, the use of a semi-open absorption heat pump for water heating has been demonstrated to be an energy efficient alternative for residential scale applications. A semi-open absorption system uses ambient water vapor as the refrigerant in the absorber where its heat of phase change is transferred to the process water, cooling the solution in the absorber. The solution is pumped to the desorber, where by adding heat, the water vapor is released from the solution and condensed in the condenser. The heat of phase change of water vapor is transferred to process water again in the condenser. This cycle when implemented with a membrane-based absorber in a plate and frame form of heat exchanger using ionic liquids can overcome the challenges related to the system architecture of conventional absorption heat pumps like the lower efficiency at small scale, crystallization/corrosion issues with the desiccants and the high cost of hermetically sealed components. The cycle COP for such a system was previously demonstrated by Chugh et al. for high humidity conditions. In this experimental study, design improvements were made that expand the system’s applicability to more practical and standardized test conditions. With these improvements, the performance of the system was evaluated. The results presented in this study demonstrate the improved system’s viability as a heat pump water heater conforming to standard water heater test conditions. Performance was measured at a cycle thermal COP of 1.2 with a hot water delivery water temperature of 56 °C and ambient air at 19 °C and 49% RH.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
bronze