Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Power system expansion planning under global and local emission mitigation policies

Authors: Daniela Quiroga; Enzo Sauma; David Pozo;

Power system expansion planning under global and local emission mitigation policies

Abstract

Abstract This work analyzes the impacts on the power system expansion planning of implementing CO2 and local pollutant emission taxes under five different policy-relevant scenarios. To do this, we have formulated and implemented an optimization model based on a mixed-integer linear program, which determines the optimal expansion plan considering the installation of both large-scale power plants and renewable-based distributed generation. An important characteristic of the proposed model is that it includes a detailed formulation of the power system. Moreover, differently than existing literature, special attention is given to the analysis of the spatial-temporal distributive effects of pollutant taxes, considering both global and local pollutant emissions. The method is applied to the main Chilean power system. Our results indicate that global and local pollutant taxes significantly impact both planning and operational decisions in the power system. In particular, pollutant taxes may have significant spatial distributive effects, as shown in the analysis of 13 regions of Chile, leading to damages in some specific regions while relatively benefiting others. Our results also show that the availability of renewable energy capacity may improve the effectiveness of pollutant taxes. Particularly, adding 1.5 GW of hydro capacity to the Chilean system allows avoiding around 32 GWh of fossil fuel generation per year, saving more than 1.5 billion US$ in the 10-year horizon considered. The proposed method and qualitative results are sufficiently generic to apply to any other jurisdiction.

Country
Chile
Keywords

330, 07 Affordable and clean energy, Economía, Carbon tax, Local pollutants, 07 Energía asequible y no contaminante, Energy policy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%