Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2019
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?

Authors: Francis G.N. Li; Aidan O’Sullivan; Chris Bataille; Steve Pye; Steve Pye;

Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?

Abstract

Energy economy models are central to decision making on energy and climate issues in the 21st century, such as informing the design of deep decarbonisation strategies under the Paris Agreement. Designing policies that are aimed at achieving such radical transitions in the energy system will require ever more in-depth modelling of end-use demand, efficiency and fuel switching, as well as an increasing need for regional, sectoral, and agent disaggregation to capture technological, jurisdictional and policy detail. Building and using these models entails complex trade-offs between the level of detail, the size of the system boundary, and the available computing resources. The availability of data to characterise key energy system sectors and interactions is also a key driver of model structure and parameterisation, and there are many blind spots and design compromises that are caused by data scarcity. We may soon, however, live in a world of data abundance, potentially enabling previously impossible levels of resolution and coverage in energy economy models. But while big data concepts and platforms have already begun to be used in a number of selected energy research applications, their potential to improve or even completely revolutionise energy economy modelling has been almost completely overlooked in the existing literature. In this paper, we explore the challenges and possibilities of this emerging frontier. We identify critical gaps and opportunities for the field, as well as developing foundational concepts for guiding the future application of big data to energy economy modelling, with reference to the existing literature on decision making under uncertainty, scenario analysis and the philosophy of science.

Country
United Kingdom
Keywords

690, Energy data, Energy modelling, Big data, Climate policy, Decarbonisation, Energy policy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green
hybrid