Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trading strategy optimization for a prosumer in continuous double auction-based peer-to-peer market: A prediction-integration model

Authors: Yonghua Song; Yonghua Song; Jin Lin; Kaixuan Chen;

Trading strategy optimization for a prosumer in continuous double auction-based peer-to-peer market: A prediction-integration model

Abstract

Abstract With increasing prosumers employed with flexible resources, advanced demand-side management has become of great importance. To this end, integrating demand-side flexible resources into electricity markets is a significant trend for smart energy systems. The continuous double auction (CDA) market is viewed as a promising P2P (peer to peer) market mechanism to enable interactions among demand side prosumers and consumers in distribution grids. To achieve optimal operations and maximize profits, prosumers in the electricity market must act as price makers to simultaneously optimize their operations and trading strategies. However, the CDA-based market is difficult to model explicitly because of its information-based clearing mechanism and the stochastic bidding behaviors of its participants. To facilitate prosumers actively participating in the CDA market, this paper proposes a novel prediction-integration strategy optimization (PISO) model. A surrogate market prediction model based on Extreme Learning Machine (ELM) is developed, which learns the interaction relationship between prosumer bidding actions and market responses from historical transaction data. Moreover, the prediction model can be conveniently transformed and integrated into the prosumer operation optimization model in the form of constraints. Therefore, prosumer operations and market trading strategies can be jointly optimized through the proposed approach, facilitating the integration of flexible resources into electricity markets. Numerical studies demonstrate the effectiveness of the proposed model by comparing with existing CDA trading strategies under various market conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    165
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
165
Top 1%
Top 1%
Top 1%