
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Intelligent load pattern modeling and denoising using improved variational mode decomposition for various calendar periods

Abstract This paper proposes a novel approach to identify the load patterns considering calendar impact and denoising process, which advances the state of art of load identification and load forecasting to a more flexible and adaptive extent by revealing the correlation between load profile and the substantial influence factors. With the rapid development and the promising application of energy internet and grid modernization, the accurate load modeling and forecasting especially by load pattern modeling (LPM) have become more and more critical to observe and estimate load profile so as to optimize the operation efficiency of the power grid. Traditional methods mostly focus on the static LPM itself which are unable to account the non-linear and highly dynamic load fluctuations in order to balance the demand of the power grid during various calendar period (VCP) scheduling. In this paper, a load pattern modeling method for power grid considering the impact of typical calendar effects is proposed using a combination of improved variational mode decomposition (IVMD) and deep belief network (DBN) algorithm. Firstly, an index of load curve curvature (LCC) is proposed to improve the selection of value K in the conventional VMD algorithm. The value K of the intrinsic modality is determined by adopting LCC to better quantify the average instantaneous frequency of the modal decomposition of the VMD and to reduce the elevated stochasticity of k. Secondly, an optimization formulation is developed based on adaptive segmented loop decomposition of the typical correlation coefficient to suppress the edge effect in VMD decomposition, which would enable the reconstructed curve to incorporate the variabilities from the initial data. Finally, the IVMD and DBN algorithms are jointly implemented to optimize the accuracy of VCP load pattern modeling curve regression. Numerical examples have been performed with the results proving that the proposed method significantly outperforms the state-of-art in reducing the modeling error of VCP load curve, improving the overall forecasting accuracy, and reducing load dispatching cost.
- Argonne National Laboratory United States
- Shenyang University of Technology China (People's Republic of)
- Shenyang University of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
