Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Qatar University Ins...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar

Authors: Nuri Cihat Onat; Murat Kucukvar; Nour N.M. Aboushaqrah; Rateb Jabbar;

How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar

Abstract

Abstract Electric mobility is a trending topic around the world, and many countries are supporting electric vehicle technologies to reduce environmental impacts from transportation such as greenhouse gas emissions and air pollution in cities. While such environmental impacts are widely studied in the literature, there is not much emphasis on a comprehensive sustainability assessment of these vehicle technologies, encompassing the three pillars of sustainability as the environment, society, and economy. In this study, we presented a novel comprehensive life cycle sustainability assessment for four different support utility electric vehicle technologies, including hybrid, plug-in hybrid, and full battery electric vehicles. A hybrid multi-regional input-output based life cycle sustainability assessment model is developed to quantify fourteen sustainability indicators representing the three pillars of sustainability. As a case study, we studied the impacts for Qatar, a country where 100% of electricity generation is from natural gas and have a very unique supply-chain, mainly due to a wide range of exported products and services. The analysis results showed that all-electric vehicle types have significant potential to lower global warming potential, air pollution, and photochemical oxidant formation. A great majority (above 90%) of the emissions occurs within the region boundaries of Qatar. In the social indicators, internal combustion vehicles performed better than all other electric vehicles in terms of employment generation, compensation of employees, and taxes. The results highlighted that adoption of electric vehicle alternatives doesn't favor macro-economic indicators and they have slightly less for a life-cycle cost. The proposed assessment methodology can be useful for a comprehensive regionalized life cycle sustainability assessment of alternative vehicle technologies and developing regionalized sustainable transportation policies worldwide.

Country
Qatar
Related Organizations
Keywords

690, Sustainable transportation, Electric vehicles, Electrification of mobility, Multi-regional input-output analysis, Life-cycle sustainability assessment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 1%
Top 10%
Top 1%
Green