Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coupling supercritical carbon dioxide Brayton cycle with spray-assisted dry cooling technology for concentrated solar power

Authors: Yubiao Sun; Sam Duniam; Zhiqiang Guan; Hal Gurgenci; Peixin Dong; Jianyong Wang; Kamel Hooman;

Coupling supercritical carbon dioxide Brayton cycle with spray-assisted dry cooling technology for concentrated solar power

Abstract

Abstract Supercritical carbon dioxide (sCO2) based Brayton cycle integrated with concentrated solar power applications is a promising technology to exploit solar energy for electricity production. To reduce the energy cost of this solar power plant, spray-assisted dry cooling technology is developed, which makes electricity more affordable for isolated and arid regions. However, pure dry cooling technology suffers from low efficiency under high ambient conditions and a spray cooling system has been proposed to address this problem. Due to the high cost and great complexity, experimental test of a designed spray cooling system on a natural draft dry cooling tower is never reported. Here a spray cooling system consisted of multiple nozzles was tested on a 20 m high experimental tower. This is, to our knowledge, the world’s first attempt to practice spray enhancement of NDDCT at full scale. It is found that the introduced spray cooling can effectively precool the inlet hot air and consequently reduce the circulating water exit temperature. The promising application of this new technology in solar power plants was firstly revealed by integrating the tower into a 1 MW concentrated solar thermal sCO2 Brayton cycle. As spraying water flowrate increases, cooling tower dissipates more waste heat, lowering the compressor inlet temperature and consequently improving the efficiency of thermal cycle. Power cycle simulations also show that cycle efficiency can be higher than 40.5% at the optimal circulating water flow rate, i.e., 4–5 kg/s, depending on the sCO2 flow rate.

Country
Australia
Keywords

2100 Energy, Heat capacity, Monitoring, Policy and Law, 2210 Mechanical Engineering, Supercritical CO2, Brayton cycle, 2215 Building and Construction, Solar energy, 2308 Management, Water evaporation, Natural draft dry cooling tower, Concentrated solar power, Spray cooling system

Powered by OpenAIRE graph
Found an issue? Give us feedback