
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions

Abstract This work presents a performance analysis of a waste-heat-to-power Reverse Electrodialysis Heat Engine (RED-HE) with a Multi-Effect Distillation (MED) unit as the regeneration stage. The performance of the system is comparatively evaluated using two different salts, sodium chloride and potassium acetate, and investigating the impact of different working solutions concentration and temperature in the RED unit. For both salt solutions, the impact of membrane properties on the system efficiency is analysed by considering reference ionic exchange membranes and high-performing membranes. Detailed mathematical models for the RED and MED units have been used to predict the thermal efficiency of the closed-loop heat engine. Results show that, under the conditions analysed, potassium acetate provides higher efficiency than sodium chloride, requiring a smaller MED unit (lower number of effects). The maximum thermal efficiency obtained is 9.4% (43% exergy efficiency) with a RED operating temperature of 80 °C, KAc salt solution, adopting high-performing ion exchange membranes, and with 12 MED effects. This salt has been identified as more advantageous than sodium chloride from a thermodynamic point of view for the RED-HE technology and is also recommended for a cost-effective technology implementation.
- University of Palermo Italy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
