
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparative study on humidified gas turbine cycles with different air saturator designs

Abstract The urge for more energy-efficient power plant systems to relieve the energy crisis triggers the design for more advanced power cycles. The humidified gas turbine cycle is considered one of the potential choices, and the air saturator performance is critical to the energy merit of such kind of system. To understand more, the performances of humidified gas turbine cycles with two types of air saturator designs were compared in this study. Type 1 air saturator was a hybrid design which combined an indirect evaporative cooler with a Maisotsenko cycle while Type 2 was a conventional indirect evaporative cooler. Detailed heat and mass transfer analysis was taken into account in the air saturator modelling. Through system simulations, it was found that all the humidified gas turbine cycle systems offered higher system efficiencies than a simple gas turbine system with recuperator. Besides, parametric studies were conducted which highlighted the effects of system inlet air temperature, turbine inlet temperature, water injection rate, and part-load ratio on the performances of the different humidified gas turbine cycle designs. The employment of Type 1 air saturator offered 9.34% and 23.55% enhancement in the system efficiencies as compared to those using Type 2 air saturator under the design and 50% part-load ratio conditions respectively. This reinforced the benefit of applying Maisotsenko cycle to the air saturator design of humidified gas turbine cycle for the enhancement of system efficiency.
- City University of Hong Kong China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
