Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network

Authors: Guijun Ma; Yong Zhang; Cheng Cheng; Beitong Zhou; Pengchao Hu; Ye Yuan;

Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network

Abstract

Abstract Accurate estimation of the remaining useful life of lithium-ion batteries is critically important for electronic devices. In the existing literature, the widely applied model-based approaches for remaining useful battery life estimation are limited by the complexity of the electrochemical modeling required. In addition, data-driven approaches for remaining useful battery life estimation commonly define unreliable sliding window sizes empirically and the prediction accuracy of these approaches needs to be improved. To address the above issues, use of a hybrid neural network with the false nearest neighbors method is proposed in this paper. First, the false nearest neighbors method is used to calculate the sliding window size required for prediction. Second, a hybrid neural network that combines the advantages of a convolutional neural network with those of long short-term memory is designed for model training and prediction. Remaining useful life prediction experiments for batteries with various rated capacities are performed to verify the effectiveness of the proposed approach, and the results demonstrate that the proposed approach offers wide generality and reduced errors when compared with the other state-of-the-art methods.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    262
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
262
Top 0.1%
Top 1%
Top 0.1%