
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A novel tin-bromine redox flow battery for large-scale energy storage

Abstract The redox flow battery (RFB) is among the most promising large-scale energy storage technologies for intermittent renewables, but its cost and cycle life still remain challenging for commercialization. This work proposes and demonstrates a high-performance, low-cost and long-life tin-bromine redox flow battery (Sn/Br RFB) with the Br-mixed electrolyte. The coulombic efficiency and energy efficiency of the Sn/Br RFB reach 97.6% and 82.6% at a high operating current density of 200 mA cm−2, respectively. The peak power density at 50% state-of-charge achieves 673 and 824 mW cm−2 at 15 and 35 °C, respectively, which is among the highest performance of hybrid RFBs. To address the Sn cross-contamination issue, a Sn reverse-electrodeposition method is demonstrated, and achieves in-situ capacity recovery as well as long cycle life. Moreover, the active material cost of the Br-mixed electrolyte is merely $54 kWh−1, while capital cost of the Sn/Br RFB is estimated to be as low as $193 kWh−1 for 4-hour electricity discharge, and expected to reduce to $148 kWh−1 at the optimistic scenario in the future. With high cell performance, in-situ capacity recovery and inexpensive active materials, the Sn/Br RFB is believed to offer a promising solution for massive electricity storage.
- Southeast University China (People's Republic of)
- Southeast University China (People's Republic of)
- Southwest Jiaotong University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
