Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells

Authors: Jian Zhao; Samaneh Shahgaldi; Adnan Ozden; Ibrahim E. Alaefour; Xianguo Li; Feridun Hamdullahpur;

Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells

Abstract

Abstract Electrode structure determines the rate of transport and electrochemical reactions and is significantly affected by the catalyst deposition method. In this study, the effect of catalyst deposition is investigated on the pore structure, mass transport, and operating performance of the catalyzed electrodes prepared by the methods of catalyst coated on membrane (CCM) and catalyst coated on substrate (CCS). The result indicates that the CCS electrode is thinner, yielding larger porosity, smaller geometric pore surface area, smaller diffusion and permeation resistivity, and lower cell performance. The maximum power density of the CCS electrodes is only about 4% smaller than that of the CCM electrodes at high Pt loadings (0.4 mg·cm−2), while it is as much as 60% less than that of the CCM counterparts at low Pt loadings (0.1 mg·cm−2). The significant performance drop for the low-Pt-loading CCS electrodes is due to the relatively low surface area in the catalyst layers resulted from catalyst penetration into the pores of the gas diffusion layer, even though the mass transfer resistivity is smaller than their CCM counterparts. The CCS method is therefore unsuitable for low-Pt-loading electrodes (

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%