Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Developing a real-time data-driven battery health diagnosis method, using time and frequency domain condition indicators

Authors: Khaleghi, Sahar; Firouz, Yousef; Van Mierlo, Joeri; Van Den Bossche, Peter;

Developing a real-time data-driven battery health diagnosis method, using time and frequency domain condition indicators

Abstract

Abstract Lithium-ion batteries are considered as promising electric energy storage systems. However, identification of battery health is a critical issue. Furthermore, battery aging extremely depends on operating conditions. Therefore, monitoring and analysis of battery health degradation in real-time systems such as electric vehicles, in which a variety of stress factors may come into play, are demanded. This paper proposes a data-driven algorithm based on multiple condition indicator to estimate battery health using application-based load profiles. In this regard, battery cells have been cycled under a worldwide light duty driving test cycle (WLTC) load profile in laboratory to acquire real-world driving data. Time-domain and frequency-domain condition indicators are extracted from measured on-board data like voltage and current within certain time intervals, enabling real-time investigation of battery health degradation. The condition indicators have been fed into a Gaussian process estimator to track the real-time state of health (SoH). As degradation strongly depends on magnitude of input current, it is important that the proposed method can predict health of the cell regardless of current amplitude and aging pattern. Therefore, to assess accuracy and robustness of the proposed method, it is validated using a different load profile with distinct depth of discharge, current amplitude, and distinctive aging pattern. Results reveal the proposed approach is highly precise and is capable of estimating battery SoH with low computational costs and a relative error of less than 1%. The proposed technique is promising for online diagnostics of battery health thanks to its high accuracy and robustness.

Country
Belgium
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 1%
Top 10%
Top 1%