Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles

Authors: Yishan Cai; Yishan Cai; Zhongwei Deng; Yixin Yang; Lin Yang;

Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles

Abstract

Abstract The battery state of available power (SOAP) is crucial to improve the energy management of electric vehicles (EVs) and protect batteries from damage. This paper proposes a novel supervisory long-term prediction scheme of SOAP for lithium-ion batteries in electric vehicles. The supervisory long-term prediction denotes that the SOAP is online predicted under the supervision of the EV’s future long-term driving conditions, instead of the traditional approaches under the constant working limitations. Firstly, to accurately capture the battery dynamics, a battery model incorporated with multi-parameters dynamic open circuit voltage is established, and the least square approach with an adaptive forgetting factor is applied to online identify the battery parameters. A new battery state estimation algorithm based on an adaptive two step filter is then proposed to improve the accuracy of the state estimation. A battery’s long-term power demand (LTPD) prediction model is also established for EVs. Based on the improved battery model and predicted battery states, especially under the supervision of the predicted LTPD, the novel supervisory long-term battery SOAP prediction approach is finally put forward to make the prediction practical and accurate. The long-term state of charge (SOC) and SOAP of battery are online co-predicted by the derived algorithms. The robustness of the proposed approach against erroneous initial values, different battery aging levels and ambient temperatures is systematically evaluated by experiments. The experimental results verify the long-term battery SOAP prediction error reduced by 85.9% when compared with that by traditional approaches.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 1%
Top 10%
Top 1%