Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets

Authors: Morciano M.; Fasano M.; Bergamasco L.; Albiero A.; Lo Curzio M.; Asinari P.; Chiavazzo E.;

Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets

Abstract

Abstract More than two billion people live in areas affected by water stress. In some coastal regions, freshwater supply has been progressively improved by large-scale desalination systems, which are nowadays mostly driven by non-renewable energy sources. Here we discuss, and experimentally investigate, the use of small-scale desalination devices for freshwater production powered by waste heat from electric power generators. The water purification technology relies on a passive, multi-stage and thermally-driven membrane distillation device, recently proposed by some of the authors of this work. The distiller is powered by low-grade (temperature lower than 80 °C) waste heat, recovered from the coolant circuit of small diesel engines for electricity production. Field experiments show that, for the tested engine, up to 1.12 kW m - 2 can be recovered in standard operating conditions, which yield a nearly 2.61 L m - 2 h - 1 freshwater production from seawater. A lumped parameter model, validated by experiments, shows that this productivity could be eventually enhanced by tuning the number of distillation stages. Utilization with exhaust gases, and thus higher feeding working temperatures, is also discussed. The proposed solution may provide a sustainable, simple, inexpensive and efficient means for freshwater production from recovered waste heat, which would otherwise be wasted to the ambient. Therefore it could be particularly effective, for instance, for field hospitals in remote or impoverished areas, especially in emergency situations.

Country
Italy
Keywords

Desalination; Low-grade heat; Membrane distillation; Sustainability; Waste heat recovery

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 1%
Top 10%
Top 1%
Green