Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers

Authors: Qin Wang; Wei Yao; Jiakun Fang; Xiaomeng Ai; Jinyu Wen; Xiaobo Yang; Hailian Xie; +1 Authors

Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers

Abstract

Abstract The distributed maximum power point tracking (DMPPT) technologies, based on a DC optimizer (DCO) for every single photovoltaic (PV) panel, are increasingly proposed to mitigate the waste of solar energy due to the mismatch problems of PV arrays. However, the stability problem of DMPPT based distributed PV grid-connected systems that involve a large amount of DCOs remains to be further studied. Therefore, modeling, deservedly, is the basis for stability analysis. Usually the model of the PV power plant consists of hundreds or even thousands of DCOs, which results in a heavy computation burden during the simulation. To solve the modeling problem, this paper proposes a matrix variables based modeling method for the distributed PV grid-connected system. The core idea of the modeling method is to convert the complex model that contains plenty of PV-DCO generation units to an average model consisting of only two typical submodules, by constructing the block matrix formed variables. In this way, the model has the advantages of good scalability and high simulation efficiency, and can be realized by the vector simulation feature of Matlab/Simulink. Besides, it is easy to obtain the linearization results directly by using the Linearization Toolbox in Simulink, which avoids the complexity of writing programs for linearization calculation when studying the stability of large-scale systems. Based on the average model and corresponding linearization results, the key impacts on the small signal stability of the system are determined via the eigenvalue analysis method and root locus method. It is shown that the total active power output by PV array, the controller parameters of the grid-connected inverter, and the strength of the AC system are critical factors affecting the small signal stability of distributed PV grid-connected system. Different simulation results verify the effectiveness of the proposed approach.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 1%