Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines

Authors: Jie Su; Yaoran Chen; Zhaolong Han; Dai Zhou; Yan Bao; Yongsheng Zhao;

Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines

Abstract

Abstract The vertical axis wind turbine (VAWT) is regarded as an important device to utilize the renewable offshore wind energy to supplement the existing power systems. Hence, the demand for higher wind energy conversion makes the research focus on the blade optimization of wind turbines. This paper attempts to propose a novel VAWT structure with V-shaped blade to improve the power outputs at moderate tip speed ratios. The feasibility of the Reynolds-Averaged Navier-Stokes SST k - ω turbulence model applied on the VAWT was verified against available experiments at first. Then a comprehensive investigation on the aerodynamic performance of such V-shaped VAWT was carried out using the SST k- ω model. The results indicated that the maximum enhancement in power coefficient obtained in the optimal V-shaped blade was about 24.1 % . In addition to the great improvement of the power efficiency, the V-shaped blade was proven to alleviate the damage caused by lateral loads to the wind turbine. Besides, the flow structures over the blade surface were studied to reveal the mechanism of dynamic stall with the reason of power increase explained. Moreover, it was found that the V-shaped blade could effectively suppress the flow separation and delay the dynamic stall in the middle of the blade, and the undesirable blade tip effect would not be more serious comparing to that of the conventional straight blade. It was finally concluded that the current work could be practically applied to the design and optimization of the VAWT blades.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 1%