Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty

Authors: Alina Walch; Roberto Castello; Nahid Mohajeri; Jean-Louis Scartezzini;

Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty

Abstract

Abstract The large-scale deployment of photovoltaics (PV) on building rooftops can play a significant role in the transition to a low-carbon energy system. To date, the lack of high-resolution building and environmental data and the large uncertainties related to existing processing methods impede the accurate estimation of large-scale rooftop PV potentials. To address this gap, we developed a methodology that combines Machine Learning algorithms, Geographic Information Systems and physical models to estimate the technical PV potential for individual roof surfaces at hourly temporal resolution. We further estimate the uncertainties related to each step of the potential assessment and combine them to quantify the uncertainty on the final PV potential. The methodology is applied to 9.6 million rooftops in Switzerland and can be transferred to any large region or country with sufficient available data. Our results suggest that 55% of the total Swiss roof surface is available for the installation of PV panels, yielding an annual technical rooftop PV potential of 24 ± 9 TWh . This could meet more than 40% of Switzerland’s current annual electricity demand. The presented method for an hourly rooftop PV potential and uncertainty estimation can be applied to the large-scale assessment of future energy systems with decentralised electricity grids. The results can be used to propose effective policies for the integration of rooftop photovoltaics in the built environment.

Country
Switzerland
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 1%
Top 10%
Top 1%
hybrid