
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A model for evaluating the configuration and dispatch of PV plus battery power plants

Abstract An open-source model was developed to optimize energy storage operation for photovoltaic- (PV-) plus-battery systems with AC-coupled and DC-coupled configurations. It includes the ability to use forecast energy prices to optimize battery charge and discharge on a rolling time horizon. The model allows for exploration of different configurations, including capital costs, inverter performance, dispatch flexibility, and capturing otherwise clipped energy for the DC-coupled system. The model can run 20 full years of hourly data in approximately two seconds, allowing comparison of a large number of configurations. We applied the model in a test case demonstrating reduced inverter clipping for DC-coupled systems and yielded slightly higher overall value than AC-coupled systems, with an approximately 2 percent increase in internal rate of return or benefit/cost ratio. Our results show that at current estimated prices for lithium-ion battery systems, large-scale PV-plus-battery plants are economically viable under the right conditions, with the configuration playing a role in system flexibility and performance. This model provides the ability for project developers, industry professionals, and researchers to use readily available software to quickly evaluate and design these systems.
- National Renewable Energy Laboratory United States
- Southern Company (United States) United States
- National Renewable Energy Laboratory United States
- Southern Company (United States) United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
