
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy

Abstract A high heat storage capacity form-stable composite phase change material (CPCM) with enhanced flame retardancy that integrated modified glass fibers with form-stable PCM was proposed. The modified glass fibers were wrapped by a composite flame retardant coating. The thermal and flame retardant properties of the CPCM were measured and compared to other CPCM samples. The results of vertical burning test indicated that the glass fibers improved the mechanical properties of the CPCM and prevented it from fracturing during the burning process. The modified glass fibers could further improve the flame retardancy of CPCM, and V-0 burning rating was achieved while the content of paraffin was maintained at 70 wt%, which means the proportion of flame retardants could be reduced. TGA results showed that the modified glass fibers could enhance the thermal stability and retard the degradation process of the CPCM, and the char residue was increased to 15.3%. Thermal cycling results indicated that the CPCM has good thermal reliability. The results of cone calorimeter test indicated that the peak heat release rate (PHRR) of flame retardant form-stable CPCM dropped by 58.8%, and the combustion rate could be greatly slowed down due to the protection of carbon layers formed by modified glass fibers. In addition, the thermal conductivity of CPCMs were greatly enhanced and the CPCM has good thermal reliability.
- Tianjin University China (People's Republic of)
- University of Science and Technology of China China (People's Republic of)
- Tianjin University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
