
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Pyrolysis char derived from waste peat for catalytic reforming of tar model compound
Abstract The pyrolysis char derived from solid waste peat was used in the removal of biomass tar. A laboratory dual-stage reactor was designed to obtain a cost-effective and eco-friendly tar removal approach using peat pyrolysis char-based catalyst. Rich pore structure of pyrolysis char can enhance the adsorption and removal performance of tar, the KOH and CO2 activation method were used to increase the pore structure of pyrolysis char. Toluene was chosen as the model compound of biomass tar for basic research. The effects of pyrolysis char and transition metal Fe on toluene removal were studied. The investigated reforming parameters were reaction temperature (700–900 °C), residence time (0.3–0.8 s) and steam-to-carbon ratio (1.5:1–4:1). The results indicated that the peat pyrolysis char-based Fe catalysts showed excellent catalytic performance (toluene conversion >89%) and gas selectivity, especially the catalyst that activated by CO2 had the best selectivity for syngas (88.1 mol%), and the waste peat catalyst was compared with other waste pyrolysis char-based catalysts. Textural characterization showed that the excellent catalytic activity and stability of the catalysts are due to the presence of FeC and FeSiO3 structures. Such the peat pyrolysis char can as a carrier be used to remove tar and produce high content syngas in pyrolysis process.
- Chinese Academy of Sciences China (People's Republic of)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) China (People's Republic of)
- Foshan University China (People's Republic of)
- Guangzhou Institute of Energy Conversion China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
