Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating

Authors: Fang Guo; Xiaoyue Zhu; Junyue Zhang; Xudong Yang;

Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating

Abstract

Abstract To obtain a better understanding of the characteristics of large-scale seasonal borehole thermal energy storage (BTES), a living laboratory was developed in Chifeng, China. In the living laboratory, combined heat sources of industrial waste heat and solar energy were adopted for 500000 m3 borehole thermal energy storage. The concept and design of the system, as well as the first operation results of the system, are presented herein. First, critical considerations for developing a large-scale borehole thermal energy storage system were briefly reviewed. The living laboratory was developed to be an experimental platform to conduct long-term field tests of major system operation options while working as an actual running application simultaneously. The flexibility of the system was enhanced using changeable system integration modes and a modular design for each subsystem. According to the monitoring results of the first heat injection period, a total of 33458.6 GJ of thermal energy was injected into the storage. The average soil temperature increased from 10.0 to 35.6 °C, and the core temperature increased to approximately 40.2 °C. The increase in soil temperature 5 m outside the storage was approximately 2 °C. No obvious temperature increase was observed 10 m outside the storage. The results indicate the potential of large-scale borehole thermal energy storage to be integrated into the district heating network to improve the flexibility, robustness, and energy efficiency of the overall energy system.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 1%
Top 10%
Top 1%