Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Research . 2020
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research Collection
Research . 2020
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2020
License: CC BY NC ND
Data sources: Datacite
Applied Energy
Article . 2020 . Peer-reviewed
http://dx.doi.org/10.1016/j.ap...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems

Authors: Scheller, Fabian; Burkhardt, Robert; Schwarzeit, Robert; McKenna, Russell; Bruckner, Thomas;

Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems

Abstract

Community electricity storage systems for multiple applications promise benefits over household electricity storage systems. More economical flexibility options such as demand response and sector coupling might reduce the market size for storage facilities. This paper assesses the economic performance of community electricity storage systems by taking competitive flexibility options into account. For this purpose, an actor-related, scenario-based optimization framework is applied. The results are in line with the literature and show that community storage systems are economically more efficient than household storage systems. Relative storage capacity reductions of community storage systems over household storage systems are possible, as the demand and generation profiles are balanced out among end users. On average, storage capacity reductions of 9% per household are possible in the base case, resulting in lower specific investments. The simultaneous application of demand-side flexibility options such as sector coupling and demand response enable a further capacity reduction of the community storage size by up to 23%. At the same time, the competition between flexibility options leads to smaller benefits regarding the community storage flexibility potential, which reduces the market viability for these applications. In the worst case, the cannibalization effects reach up to 38% between the flexibility measures. The losses of the flexibility benefits outweigh the savings of the capacity reduction whereby sector coupling constitutes a far greater influencing factor than demand response. Overall, in consideration of the stated cost trends, the economies of scale, and the reduction possibilities, a profitable community storage model might be reached between 2025 and 2035. Future work should focus on the analysis of policy frameworks.

arXiv

Countries
Germany, Denmark, Germany, Switzerland
Keywords

Demand response, Optimization modelling, General Economics (econ.GN), Demand-side flexibility, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, FOS: Economics and business, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, FOS: Electrical engineering, electronic engineering, information engineering, Sector coupling, Demand-side flexibility; Demand response; Sector coupling; Storage systems; Optimization Modelling; Energy transition, Optimization Modelling, Energy transition, Economics - General Economics, Storage systems

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Green
bronze