Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach

Authors: Tian, Jinpeng; Xiong, Rui; Shen, Weixiang; Lu, Jiahuan;

State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach

Abstract

Abstract State of charge (SOC) estimation constitutes a critical task of battery management systems. Conventional SOC estimation methods designed for dynamic profiles have difficulties in estimating SOC for LiFePO4 batteries due to their flat open circuit voltage characteristics in the middle range of SOC. In this study, a deep neural network (DNN) based method is proposed to estimate SOC with only 10-min charging voltage and current data as the input. This method enables fast and accurate SOC estimation with an error of less than 2.03% over the entire battery SOC range. Thus, it can be used to calibrate the SOC estimation for the Ampere-hour counting method. We also demonstrate that by incorporating the DNN into a Kalman filter, the robustness of SOC estimation against random noises and error spikes can be improved. In the case of significant disturbances, the method still maintains a root mean square error of 0.385%. Moreover, the trained DNN can quickly adapt to various scenarios, including different ageing states and battery types charged at different rates, thanks to the transfer learning nature. Compared with developing a new DNN, transfer learning can provide more accurate estimation results at less training costs. By only fine-tuning one layer of the pre-trained DNN, the root mean square error can be less than 3.146% and 2.315% for aged batteries and different battery types, respectively. When more layers are fine-tuned, superior performance can be achieved.

Country
Australia
Related Organizations
Keywords

006

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    228
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
228
Top 0.1%
Top 1%
Top 0.1%