Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamic and environmental sustainability analysis of electricity production from an integrated cogeneration system based on residual biomass: A life cycle approach

Authors: Prestipino M.; Salmeri F.; Cucinotta F.; Galvagno A.;

Thermodynamic and environmental sustainability analysis of electricity production from an integrated cogeneration system based on residual biomass: A life cycle approach

Abstract

Abstract This study analyses the sustainability of a bioenergy system fed by residual biomass with high moisture content (citrus peel), which is designed in cogeneration mode and integrated with the factory generating the residue. The impacts of electricity production are comprehensively assessed by conducting thermodynamic and environmental analyses with a life cycle approach. Two scenarios were analyzed considering the differences in the process layouts between juice factories. The first scenario with wet feedstock (Scenario W) includes the drying process in the bioenergy plant's boundaries. A second scenario uses dry feedstock (Scenario D), and the drying process is considered outside the boundaries. The thermodynamic performances are assessed by life cycle energy/exergy efficiencies, the cumulative exergy demand of non-renewable resources (CExDnr), and energy/exergy return on investment. Additionally, a new renewability indicator is introduced, hereby named Integrated Renewability (IR), to consider the origin (renewable or non-renewable) of the resources substituted by the side products. The Life Cycle Assessment shows that the scrubbing process, fed with bio-oil, could undermine the system’s sustainability. The overall exergy efficiency was determined to be 0.29 and 0.24 for Scenario D and Scenario W, respectively. Compared to the electricity from the national grid (Italy), the integrated bioenergy system leads to lower life cycle exergy efficiencies in both scenarios (0.24 and 0.20 for Scenario D and Scenario W, respectively, Vs. 0.34 for national grid), higher IR (3.1 and 1.5 Vs. −0.9), lower CExDnr (0.32 and 0.33 vs. 1.9 MWh/MWhe), and lower climate change impacts (−332 and 1.29 vs. 447 kgCO2/MWhe).

Country
Italy
Related Organizations
Keywords

Bioenergy, Citrus peel, Cumulative exergy demand, Gasification, Life cycle assessment, Renewability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%