Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hong Kong Polytechni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes

Authors: He, R; Yang, H; Sun, H; Gao, X;

A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes

Abstract

Abstract The development of a more advanced three-dimensional wake model for wind power generation is presented based on a multivariate Gaussian distribution. The newly-presented model is closer to reality as it truly depends on two independent dimensions (namely horizontal and vertical directions) rather than the radius of a circle. For this reason, the general expression of wake expansion rate in each dimension is specifically developed. In addition, by taking into account the inflow wind shear effect, this current model is able to accurately capture the asymmetric distribution of the vertical wake profile. Four cases including experimental data from wind tunnels and field observations as well as high-fidelity numerical simulation are used to validate the present model. Compared with conventional models, this new model is capable of predicting the wake distribution of a single wind turbine reasonably well. The proposed model is highly simple with a low computational cost. Before applying this model, no additional numerical calculation or trial calculation is required. Wake velocity at any given spatial position can be calculated in an accurate and fast manner. Because of its accuracy, universality and low cost, the present three-dimensional wake model is able to make contributions to farm-level applications such as layout optimization and control strategies and therefore benefit the power output of wind farms.

Countries
China (People's Republic of), Hong Kong, China (People's Republic of)
Keywords

Wind tunnel and field measurement validation, Multivariate Gaussian distribution, Anisotropic wake expansion rate, Three-dimensional wake model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 1%
Green