Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?

Authors: Cristian Mardones; José Ortega;

Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?

Abstract

Abstract Computable general equilibrium models are becoming popular for simulating emissions trading systems. However, these models make various assumptions about the production structure and the possibilities of substituting energy for productive factors or inputs. Therefore, this study aims to analyze how different options to incorporate energy into the nested production structure of a computable general equilibrium model affect the obtained impacts when an emissions trading system is implemented. A flexible computable general equilibrium model called ECOMODEL is developed, which is the first model that allows choosing any of the three nested production structures most used in the literature (KEL-M, KL-EM, or KLE-M). The Chilean economy is used as a case study since there is a current database with high disaggregation of the energy sector for calibrating the computable general equilibrium model. The results show that the simulated impacts with KEL-M and KL-EM structures are the best when elasticities of substitution equal to the values ​​most frequently used in previous studies are chosen. However, the KEL-M structure that considers energy as a substitute for capital provides overly optimistic environmental results when high elasticities of substitution are used, obtaining the lowest reduction in Gross Domestic Product and the lowest price of the emissions trading system. Furthermore, the KLE-M structure gives unrealistic results regardless of the elasticities of substitution used. In consequence, a KL-EM nested production structure should be prioritized to simulate an emissions trading system since it provides realistic results and is less sensitive to the values of the elasticities of substitution.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
bronze